If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-55X+300=0
a = 1; b = -55; c = +300;
Δ = b2-4ac
Δ = -552-4·1·300
Δ = 1825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1825}=\sqrt{25*73}=\sqrt{25}*\sqrt{73}=5\sqrt{73}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-5\sqrt{73}}{2*1}=\frac{55-5\sqrt{73}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+5\sqrt{73}}{2*1}=\frac{55+5\sqrt{73}}{2} $
| 12m+25=85 | | 2a+6=16= | | 1206.4x=5x | | 8x^2-49x+75=0 | | 3(x+4)=2x−1 | | x3(x+4)=2x−1 | | 3(x+2)+5=20 | | 7x-1=5x+19 | | 2a-6=16= | | X^2-55x+280=0 | | -7x+6=-5x-16 | | -8+4p=28 | | 3.82+16.18=h | | 10^3x-1+4=32 | | 6(r-4)=3r-2 | | 5(z+4=) | | 2(x+19)=57 | | -26x+40x=-28 | | 1x/5=3 | | 8+x=7x+32 | | t-184.9=-109 | | 2/3(r)=360 | | t-7.1=10.3 | | 6x+(-3)=1 | | 2a-6=18= | | 6t-16=9t-36 | | 2/3r=360 | | 5z+3(3z+8)=12+18z | | k+7.1=10.3 | | x+23+x+23=2 | | 4-(x+3)=8-5(2x-3)= | | 4(x+1)+5=6(x-1)x |